DATZ : hugust 254 19278 PE-T-483
TG R & O Perscnnel
FROMS Killiam M. Miller

SURJECT: PL/P Specification

Introduction

PL/P 4s & varijant of &NSI PL/TY altnough a subsct in n~ost
respectss it conteins scveral sicnificant extensions to the stancard
languaze. Since this dccument descrioes only the <cdiffererces between
PL/P anc ANSI PL/Iy readers not familiar with the full language should
consult cne of the references in the nibliography -before proceeainc
with this documente. (Appendix Ay ®PL/P Coursc Syllatcuse" 4s also
attached for the reader®s conveniences zlthough it is dintenceac to oe
-used 1in connection with a course wherein the teacher woulc expana upon
its contents with fuller explanations and exampless)

ANSI Features_Missins_in_PL/P

The following features of ANSI PL/I are not included in PL/P:
1. ALl forms of input and output

2. The CONDITIJON mechanism s R

3. The ALLOCATE and FREE statements

4 The STOP statement

5. The DEFAULT statewment

S« ALL attributes exceot INTERNALy EXTERNALe STATICe AUTOMATIC,
BASED, ALIGNEDs UNALIGNED, DITe CHARACTER s VARYING
NONVARYINGe ENTRYs RETURNSy LABELes POINTERs BINARYy FIXED,
LIKE« " INITIALe CCNSTANTe VARIAELE: and CPTIONS and (implicit
only) CIMENSTIONs MEMBERs PRECISIONY PARAMETEFRs REAL, and

STRUCTURE

7. ALL builtin functions anc gseudoveriables gxceot BINARY,
CHARACTERy MCDs OIVIDEs AFTERe BSEFCRCe COPYs CATEs INDEX,
LENGTHs REVERSEs SUBSTRs TIME. TRANSLATEs VERIFYs NULLs ana
ADDR

£« Azgrecatec expressions anc promotions excegct oromotion frorm

scalar tc arrey in simple assianment statements

-

10.

d1.

12.

13.

14.

15.

18.

19,

20.

21.

22.

23 .

Pagc 2 PE~-T-483

Implticit cdeclaration of user-defined names

Implicit conversiony, excect of oprecision or sizes between

VARYING and NONVARYING CHARACTEE cdatasy and between BIT and
FINARY with precision <= 15

Condition prefixes

variable extents except the "»* string size 1in a CHARACTER

parameter descriotion in the ceclaration of an external entry
Subscripted Label constants
END statement closure Llabels

Scaled and imacinary arithmetic constants and the
default-suppressing character P

The %INCLUDE statement

OPTIGNS on the BEGIN statement
Unconnected array references
Multicle-target assignment statements
BY NAME assignment

21T VARYING

The REFER option

The #* ancd / coérators

In acditions the following restrictions apply:

l.

2o

No reference may contain more than one parenthesized Lliste
except structure references 1in which tne subscripts are
cdistributed over the componentse

00 indices must be either BIMARY or POINTERS

The INITIAL attribute may only contain string or earithmetic
constantss the builtin function NULL()y or "«v,

Iteration factors in the INITIAL attribute m@must be dintecer
constants.

Only items of storage class STATIC may be initializedeo
The BASED attribute may not <contain a pointer reference;

hence. all references toc EASEC variacles must be
pointer-gualifiece.

l.

e

Paqge I PE~T=-483

7. Eitstrings are alignec so that they will not <cross word
toundariesy ana nerbers of bitstring arrezys are werd-aligned,
regardless of alicnment attribute.

8 Builtin functions which ¢o not take arcuments must be coced
with an ewpty arcument Llist.

9, The date type must be given for each parameter ir an ENTRY
attribute anc for the return value in the RETURAS option of
the PROCECURE statement and the RETURNS attribute.

tribute must

10« The declaration of the reference in the LIKE at
the progrem, anca

orysically prececcde the LIEC reference 1in
must not contein a2 LI¥E ettricute.

11« The first argument to the EIT pbuiltin function must be either
an integer constant or e BINARY variable of precision <= 1S.

12 Scaele factors are not allowec in the BINARY attrisute.

13, The first argument to the CHARACTER builtin function must be
either an dintecer constant or a GDINARY variableo

14. The seconcd arcument to the CCPY builtin function mnmust bLe 35
constant.

15. The third argument to the DIVIDE builtin functien wmust be
present and te an integer constant ana the fcurth arourment
"must be omittec.

16« The Lenath of a SUBSTR bqiltiﬂ_ function or pseudovarijable
whose first argument is a vitstring must be calculatable at
compile timre.

17. Character string constants may not <contain the newline
charactere

185 Unaeligned bitstrings mey ve passec as arcuments -only via
call-by=-valueo,

19 For aggregate parameters anc¢ arcumentsse array sjze anc
dimensionality and structure shape are not ccnsiderecd in
argument valicdatione.

Imolerentation-Soecific Featurses

ALl procedures are 1{implicitly recursives except thcse dnternal
prccedures coded with the SHORTCALL optione.

The maximum size of character strinzs is 8152 characterse.

The maxitum size of bit strings is 16 bDitse.

http://i_iJ.c_Fe.at

4.

Page 4 PE-T-482

The UNALIGNED attritute implies character alicnment fer CHARACTER
MONVARYING dates bit alignment for non-array titstrinc datas and
word a2lignment for all cther cases. :

The ALIGNED attribute implies word alignment in all casese.

The maximum length of an identifier name is 32 characterse.

The.maximum Length of 2 source line is 256 characterse.

POINTER variables use two words (32 bits) of memory and hence may

_only point to word-aligned datae.

J1c.

l1.

12,

16,

more
Agpe

OPTIONS(GATE) muy be srecified on the external PROCEDURE statement.
causing ring weakening to c¢ccur tor all PAFAMITERy EASEDs anc
EXTERNAL pointers upon assignmente.

OPTIONS(SAVEC(ref)) may be specifiea on a PROGCEDURE statement tso
cause an RSAV into the variable "ref" to be generatecd before any
other code in the procecurece

OPTIONS(SHCGRTCALL) may be specified on an internal PROCEDUREL
statement to cause it to be a2ccessed by JSY dinstead of PCLS the
compiler diagnoses incorrect use ocf this featuree.

OPTIONS(SHORTCALLL (integer_constant)]) may be specified 1in a
declaration with the ENTRY attributes specifying that the external
routine 4s to accessed by JSX8 dnstcad of PCL. See Appendix A for
‘more details.

External references are resolved on the basis of the first edight
chbaracters of the npane.

POINTER9 BINARYes and 8IT return values are passed in the A or L
register in order to conform to the FGRTRAN convention.

LABEL variables are stored with the first two words (i.e.s the
pointer to the execution adaress) interchanged for compatibility
with FCRTRAN routines expecting an alternate-return argumentos

Arguments passed to a CHARACTER(=)NONVARYING parameter are
actually passed as two argumentses the first being the strino
contents and the second the strinc lencthe This conforms with a
pooular FORTRAN calling sequence. (No additional information is
passec to & CHARACTER(+*)VARYING perametery since the string 1is
self-defining with respect to lencth.)

2

cn-Standard_Extensions_in_PL/P

The following extensions to ANSI PL/I are avaiteble in PL/P (for
information regarding the functions of these fcaturess see
ndix A):

2.

n

Page PE-T-483

l. Uppercase ancd Llocwercase are completely interchangeable,
except within character strina constantse.

2« U"SINSERT trecname®, if it beoins in column 14y is not followec
by any other text on the liney and the "I* dJs cepitalizea
will be Llocically repltacec in the <compiter input by the
contents of the file referenced Ly "treename".

3+ The "3™ character is legal in identifierss except thdt it may
not be the first character of the identifier name.

4 Argument-parameter type and number checking 1is disabled by
ceclaring the entry name with no parameter Liste.

S. -The SFLECT statement

Se The LEAVE statemecnt

Te The 2NQLIST and XLIST statements

Be The %XREPLACE statement

9. The UNTIL ootion of the 0OC statement

10. The CALL statement has been extended to recognize the
followineg "builtin subroutines": INHIBITy ENABLEsy WAIT,
NOTIFYBs NOTIFYE.

11. The SEARCH, LINKPTR STACKPTR « SASEPTR ACDREL PTR
(nonstandard definition)lsy RELs RING, SEGNOs -~ GBASEREL

STACKBASEy CSTOREs REGFILEs ADDGTs ADDGEs REMGT, REMGB,
TESTRs and TRIM puiltin functions

" Pes

12. The REGFILE and REGISTERS pseudovariatles

Bibljocraphy

The PL/]1 Preocrammipo_Lancuaaes Paul Abrahams--CG0-3077-151¢ Courant

Pathematics and Computing Laboratorys New York Universitys March
1978 '

Hultics FL/I _Reference_ anual--AM83 Revs Gy Honeywell Information

Systemss June 1976

http://func.tj.fias

Page S PE~-T~432

Appendix A

ch e kA,

-

I.

Page 7 , PE-T-483

PL/P Course Syllezbus-

overview of differences between FCRTRAN and PL/1

Ae

Be.

Ce

Ee

Fe

Ge

1.

No distinction macde between upper and lower case (PL/P only)
Freer Line structure
1. ©No column depencencies

ae Up to 256 colunmns (PL/P)

be N¢ continuation column--ststements are completely
Line~independent

ce 0o comment column--alLllL comments begin with "/=*" anc
EGEEZF"E? Lines

de No label field--latels are iJdentifierss not numbersy
and may be in any columns followecd by %™ to indicate
Label

2« Semicolon regquirec to eng statements--allows Line
incependence

3. Soaces are reqguired to separate identifiers (keywords,
variablesy Labelsey etce) ano numbers from themselves éand
each other when not separatec by other non-alpbanumeric
characterss may be wuseac freely anywhere except within
lexical itemse.

4, Blank Llines allowed

Aroitrary complexity of expressionss even in subscripts

Call by value instead of call by reference for constants anc
user-selected variables

Identifier namnes are more flexiole

Block=structurec=--allows internal subroutines

Multiple entry pointsy with same or cifferent callinag sequences
Storace classes available on a2 per-variable basis for things
like -CYNMe CCMMONy and runtime stcrace manacement (no parallel
in FORTFAN)

Extended DO~loop functionality

1 Losical conagitions as well as jterative counts

II.

Jo

Ke

.L;

M,

Ne

Oe

Pe

Qe

Re

Page & PE=-T-482

2« Does pot exccute once unconditionally

3 Able to count backwards

4. Multiple specifications for loops

S¢ Able to use non-integer data for index

IF-THEN-ELSE; nestable’s wusable with compocund statements
¥ide range of cdata types

l. Pore flexible arithmetic types

2« Accditional types for bitssy fixed- and varying=lencth
character strinasy pointerss labelsy etce

Able to group data ditems Llogically iIn storacey even if

different data types
Able to count characters in calts for the procrammer
Able to validate arguments in calls

Arrays are stored 1in row-major order: richtmost subscript
varies most rapodidly

Keywords are not reserved and may be used as identifiers
Dynamié handling of errors and other exceptions ¢(not in PL/P)

Flexible 170 (not in PL/P)

Identifiers

Ae

8.

Ce

Neming restrictions

le HMust begin with an alphabetic character; ray contain
digitsy “$%4y and “_* ("_“ is good for clarity by separating
words in a name)

2o Intcrnal names mey be up to 32 characters long} external
names may be up to 8 characters (PL/P and SEG restrictions)

Except for label constants and builtin functions (see below),
must be exolicitly declarea (PL/P restrictions but qood
programming practice)

The DECLARE statement
1. Replaces the type statements (REALe LOGICAL, etce) of

FORTRANS the data type of an ddentifier 1is given by
keywords followina ity rather than by different type

"Nal

De

-

0

Pacec PE-T-483
statements

2. Moy appear anywhere in the ©procecures subject to scope
rules (sce below)

3¢ Syntax: DOCL <var_spec>ly <var_specd>ls oseell;

ae Typical syntax of <var_spec>:
Clevel] variable_name [(<dimensions>)] <attr1butes>

fe "level®" is used only to cdeclare structures (see

below)
id. <dimensions>y if sresentys specifies that

"variable_name" is anr arraye Syntax:
Clboundl:] hooundl [y Llboune2:] hbcunds Lo oesll
IfT "ltoouncn® 1is onmittede. default is 1. ticte that
arrays need not start at index=1le. PL/P
restriction: all bounds must bte decimal dinteger
constantse

iiie <attributes> specify storace classy scopes initial

value, and cdata typeys sizes precisions and
alignment (see below). If aultiple words are used
for <attributes>s orcder is not important.
bs <var_spec> may be "factorec" by use of parentheses so
that “level®"sy <attributes>: anc <aimensions> apply to
more than identifiere.
Attributes
1« Stcrage classes Tom MR e .
Qe AUTOMATIC
ie Default storage class=--mcst fregquently usec
iie Like -TYNM option in FORTRAMN=--storzoce is in stacky
so recursive invocation gives a rew “aeneration®" of

storagey Lleaving velues in previcus but stiltl
active invocations untouched

i1i. CLCoes not necessarily retain velue fror one call to
the next

ive Usecd for most variables unless there is a reason to
use something else.

be STATIC

ie Like SAVE in FORTRAN

nl ameman ik - e b -waem 2l alm]l A aem D1 I

2.

Pagce 10 PE-T-483

iis ALl rccursive 1invocations reference the sane
generation of storage

iii. Retains value across invocations

ive Used for communication amonag recursive 4Jnvocations
of a routinc or for vatluc retention from one catl
to the next

ve Storage 1is in linkage section
Coe BASED

i ™o storuge allocated for EASED variables at compile
or Lload timazy either refercnces stcrace allocatec
for another wveriadle (see ACDR builtin function
below) or storace explicitty allocated by the
procram at runtime (see ALLOCATE statement below)

iie *ust be referencecd through & pointer (ie.eey "ptr =->
based_variable™) :
iii. UWhen referencing basecd storagey the pointer

provides the addresss the basec variable provides
only the data_type template to be usea in accessing
the storacee.

ive Used for run-time storage management (see ALLCCATE
and FREE statements below)s for linked lists cf
datasy for ease of passing structures @as arguments
(by passing a pcinter to the structure)s and for
accessing the same starage, as cifferent types of
data (eeges treating e word of memcry as 2 ASCII
characters but beinag able to access inaividual bits
also?

de PARAMETER

jo Applies only to the arguments of the current
procedure _

iie PL/P supports the adcress type but not the keyworo
eo Storage classes are mutually exclusive

Scopes

ae INTERNAL--variable name is known ‘only to the block
which declares it and any contained blocks (see ™Scope
Rules®™ pelow)s this is the cefault score for variables

be EXTERNAL

1i.

iii.

11 PE~-T-4383

s
LU
o]

ko]

The storage associatec with the variable may be
accesscd by any other olock which also declares the
variable name as EXT

.

Corresconds to FGRTRAM nameg ccmmon

Inplies STATIC? no other storage <c¢lass may be
given

3. Data typess sizesy precisions

be

FIXED 8IN (torecision)l

i.

ife

Ve

EBIT

iie.

Caorrespooncds to FCRTRAN INTEGESR

1 < “orecision" < X! «(for PL/P)=-number of bits
required for the gaposolute__value of the range of
integers the varicole represenfis——e+qey FIXED
BINC1S) ds the same as INTEGER=*2. Must be a
decimal intecger constant

If omitteds default for "orecision® 4is 15--single
word intecer

Twec associatec formats fer c¢onstants? binary
constants (*{c | 1)}+B"y where ®{]2" indicates
choice of “C" or ®"1® and "+" dncicates one or wmore
instances of the preceding) or deciral integer
constants

PL/P allows dmolicit conversion to anc from BITy’
where the corresponcinc oit pattern is aefined as
that of the absolute value of the binary item - with
the sign bit truncateds 1t is then zero-padcec or
truncated on the righte as necessary to match
lencths

{(size)]

Allows access oy namec¢ variable to individual ©bits
of memory (insteac of shiftss truncetesy maskso
etcs?

1 £ "size™ £ 15 (for PL/P)--numnbter of bits 1in the
data dtem (must oe cdecimal dJnteger constant in
PL/P)

PIT(1) may be used in the same way as FORTRAN
LOGICAL din IF statenents (see below for possible
values--not "<TRUE." &anc ".FALSE."!)

If omitteds default for.“size" is 1

Ve

Vie

Page 12 PE-T-483

Constents are of the format
"f(factor)] *char+*FlradixI"
where:

*“factor" is the string replication factors it
must be a decimal 1integer constant and
specifies that the bit constant is actually
"factor" concatenated occurrences of the
string given

“"s+" Jndicates one or more occurrences of "char"

"racix"” 1dis the racix fectorse 2 cecimal intecer
constant which is interpreted as the number
of bits represented by each "char"™ anc
implies which <characters are legal in the
strince 81" or omitted dmplies bLinary
representation; ng2% qimplies quaternary:
33" implies octals anc "64" implies hexe.

PL/F atlows implicit conversion to FIXED BIN (see

FIXED BIN for definition of conversion result)

€e POINTER

i.

A pointer contains a memory ecdress (e.aey the
result of an EAL dnstruction)e ALl pointers in
PL/P are of the 2-word variety--no bit cffsetse.

There are no pointer .constants;y values for
pointers are obtained solely throuch use of builtin
functions (see below)

No conversions of any sort are defined for pointers

de CHAR [(size)d [{VARYING | NGNVARYING)]

ie

14,

Represents a strinc of ASCII characters

"size® (must be a decimal dintecer ccnstant between
1 and 8192 for PL/P)Y specifies the number of
characters the variable can containe. “NONVARYING®
implies that <character strings assicned to the
variable will be btlank-padded on the rights 1{f
necessarys so that the Ltength will always be
exactly "size": VARYING implies that this ©blank
padding will not occur ana that the 2ctual Llength,
which may be anything from ¢ to "size"y will be
kept with the variable tactuallys in the first worcd
of storzge allocatead for it)e.

Page 13 ' PE-T-483

{ii. "size", if cmittec,y cdefaults to 1; 1if neither VAR
nor NONVARYING 1is specifiedy tre cefault is
NONVARYING .

ive Character constants are of the form
{C(factor)] *char+?
where
vfactor® is the replicaticn tfactor (see
description of bitstring cornstants above)
"2 jncdicates zero or wore occurrences of
"c harll
“char" is any valid ASCII character; if a
single qucte is tc be includecsy it must be
doucled
Character constants must not incluce <newline> 1in
PL/P=-i.ee¢ they must not cross lLine boundaries
Ve Varying ana nonvarying strincs may te assigned to
each others no other 1implicit conversions ere
allowed by PL/F for character oata
€e LABEL
i« Label variables fddentify not only & particular
executable statement but also a particular
invocation of thg_qgﬂﬁgiqipg block
ii+ Label ccnstants are cefined by the LlLabel name
occurring immediately before the text of the
associated statement and separated from it by a
colone. A sincle statement mey have multiple Llabel
constants

iii. Label conslants or variabtles may be used to
interface with FORTRAN routines which expect an
alternate-rcturn parameters,

ive No conversions are definecd for labvels
fo ENTRY L(C<ara_List>1)] [RETURNS (<arg_descd>)]

C{CONSTANT | VARIASLE}] [CPTICNSC(SHCRTCALLI(size)1)]

i.

Defines the joentifier to be the name by which &
procedure or entry point is to be referenced. 1If
the RETURNS attribute is codecds the didentifier must
be used only Llike a FORTRAN tunction reference
(ieCey the proceaure name may be wusea 1in any

ole

wle
-y
[]

Page 14 PE~T=~-48.

circumstances where a variable of the type
described 1in <arg_desc> could beli otherwiscs tht
iderntitier name must be used cnly in CALIL

statementse If "CONSTANT" is cocdedsy the identifie
is the name of an external orocedure or entr:
point. It must not be used of internal procedures:
it may not be a member of a structures.nor wmay {1
be given a storage <class or cimensionse. I
"VARIABLE® is specifiedy howevery the name simpl:
references a varjable whose value 1is that of :
prccedure or entrysy either dinternal or external.
and these restrictions do not applye The entr)
value may be assignecd to the entry veriable in an:
of th2 normal ways (the proorammer is responsible
for 3assuring consistency of paramete:
declarationses) 1t neither CPCOMNSTANT " no1
"“VARIABLE®™ is uaivens the default is YCOMSTANT".

<arg_Llist> has one <arg_desc> for each argument t¢
be passed din the cally secarated by commase Ar
<arg_desc> is identical 1in format to <var_spec?
(see abovel)ly even 1f a structure (see below)y
except without the variable names in addition,
attributes giving storace classes scopey and initial
values must net be specifiece. Each <arg_desc>
defines the data type expected by the callec
procedure in the corresponcding argument position or
returned by the procedure. The supplied araguments
must match the specified descriptors in number anc
in typee. An error occurs if the wrcocng number of
arguments is supplied. If data types precisions
sizee or alignmnent mismatch occurss the argument i§s
converted to the expected types etc.s if possible
(an error occurs if notd)e the result is placed in a
compiler-generated temporarys and the call 4s made
using the temporary 1in place of the supplied
arcument (call by value).

If only .the parentheses are given with no
Carg_Llistd, the corresponding function
references/CALL statements must have no arguments.
If the parentheses are also omittece no checking
Wwill be performed by the compiler on argument
number or type.

Only in ENTRY <arg_Llist>sy the "size" of a CHAR
ara_desc> may be specified as "=", If <arg_desc>
is VARYINGs any size verying string or character
constant may be suoplied as an arcurent without
causing mismatcho If NONVARYING any size
nonvaryino string or character <constant may be
supplice without mismatch ands 1in a&additions the

generatccd code will have 2 arguments in this

4.

Fage 1% PE~-T-483

position: firsty the stringse ana sccondy,. the
Lenath of the string in characterse This feature
of CHAR(*) NOMNVARYING is wuseful when dnterfacing
with many FORTRAN rcutines which accept
string-length argurent pairse Note that mismatch

between VAR/NONVARYING causes cell by valuce

Ve If cocded with “OPTIONS(SHORTCALLLC(size))", the
entry will be accessed via JSX35 rather than PCL»s
and argumentss if anye. will te psassed via the
L-reg: if 1 argsy the L-reg wWill point to the
argunents if - >1e« the L-reg will contain the
address of a List of 3-word ocinters to the
argunentse A minisun of 2 woras of spece for use
by the catleed routine will be Lleft at SE¥+25
(decimal); the size may Se increasec &y usins the
optional "size" argument (which rmust te a
constant)e.

Inftial values

e

be

Ce

do

Syntax: INIT (<value_Llist>)

Causes the variable to get the given value(s) at the
time of allocation-- AUTOs when the block is entered;
STATICs at load tiresy EASEDes on explicit allocation.
Itlegal for PARAMETER.

<value_List> is a commated List of values of the sanme
type as the variable beding initialized (PL/P
restriction: values must be constents)e If an array
is being 1dnitializeds <(value_Llist> must have exactly
the same number of elements as' the arrays if the
variaole is scalary the List must have one element. If
several consecutive values are identicals they may be
replaced oy ."(count) value"sy where *®count®” is the
number of values replacea (note ambiguity with string
replication factor in case of it or character values;
must specify "(count) (factor) value" to iterate these

data types?.

Must not be specifiec for structures (see below):
individual variables within a structure may be
initialized. Allowed by FL/P only for STATIC
variables.

Alicnment

3o

bo

Syntax: C(ALIGNED | UNALIGNEDJ]

*ALIGRED® ootimizes ease of accesss "UNALY ootimizes
space used.

Page 1e PE-T~483

Ce It omitteds “UNAL"™ s the default for BIT and CHAR
NONVARYING; “ALIGNED® is the default fcr all else.

de PL/P restrictions anc function

ie No effect for anything other than BIT and CHAR
NONVARYING; everything else is always word-alignec

iie If unalignecs conticuous bitstrings in @ structure
(sec below) will bhave no breakage between them
unless necessary to avoid a bitstring crossing a
worcd boundarys octherwises cach aligned bitstring
and the following 1{item will becin cn a word
toundarye. In arrays of citstringss each element
beains cn a word boundary regardless ¢cf alianment.

For CHAR dataas each character is always
byte-alignedy, regardless of alignrento If
unalignecdy no breakage will occur between array or
structure elements of type CHARS otherwisesy each
alicned element and the following element will
begin on a worc bounaary.

ale
wde
=0
*

Structures

1.

2e

3o

Te

Used for arouping Llogically-related but different-typed
data in storagc and for linked Listse.

Members of a structure are declared 3just Llike other
variabless except that "level”™ is present &nd creater thar
l.

Structure members may themselves be structuress in whict
case only alignment <attributes> may be scecified and the
vLevel" of the succeeding variable must oe c¢reater thar
that of the current meambere.

The top-level variable of & structure must have a *“level®
of 1. This wvariable and only this variatle din the
structure may have scope and storage class specified.

If alignment is explicitly specified for a structures tha
alionment 1is the default for all members of the structur
unless overriden by a cortained structure for its ow
memberss otherwisey alicnment for members of a structur
is determined as described above.

A structure member npame nust be unique within it
immediately-containing structures but it need not be uniqu

beyond that.

To avoid anbiguitys structure members may be “qualified" b
preceding the memoer name oy the name of a containin

10.

11.

* 12,

Page 17 PE-T-483

structure and secarating them ty a "e"e As many containing
structure names as are present msy be specifiec using this
syntaxe

LIKE
ae Syntax: LIKE structure_rcterence

be "“structure_reference" 1is the name of a structure
declared earlier in the program and known to the block
containing the LIKE ceclaration (see “Scope Rules"
below): dt need not be a level=-1 structuree.

cs The effect is as if the ceclarations of all members of
"structure_reference" had been copied directly
follewing the veriadble w»ith the LIKE ettritutes except
that Level numbers are acdjustcec upwerc or cownward as
necessary to be compatible with their position in the
new structure.

de Restrictions: *structure_reference® must have been
declarsd before 1dts wusage 1in the LIKE specification
(PL/P only)s vstructure_reference™ must not contain a
LIKE attribute.

Any subscriptine required in the *chain® of structure
references may be specified as if the member referencecd
itself had all the dimensions requirecde.

If a structure s BASEDs a reference to & membter assumes
the pointer contains the acdress of the base« or top Llevel,
of the structurey and the offset of the member within the
structure is addesc to theé "value of the pointer in
evatluating the reference.

If 2 structure is externals only the top tevel name need
match declarations 1in other -locks? tember names are not
checkede.

REFER
8¢ Syntax: <allocation_length> REFER reference_Llength

be Allows EASED structures to be self-defining 1in the
amount of storage occupiec by a generation of the
structures replaces a soun¢ of an array member or the
size of a character string member.

ce <allocation_Llenath> is ar expression which is evaluated
whenever the structure is allocetecd (see tha ALLQCATE
statement below)} the value is.used to determine the
amount of storage to allocate for the structure ana
after atlocation the value is assigned to

http://nair.es

Fe

13.

Fage 18 PE-T-483

"refcrence_length"™ in the new gencration. If the
structure 1is simply used to overlay alrezdy~allocatec
storagey ieees it is never the object of &an ALLOCATE
statement, Callocation_Llength> 'is ignored and may even
he the constant *0".

¢e "reference_Llength®™ must be an elementary (ie€0ey
non_structure) scalar (including inheritea dimensions)
member of the structure; it must precede the member
containing the REFER option which references ite and
its "lLevel"™ must be less than or equal to that of the
member referencing it. Whenever the structure is
referenced in the programy "reference_length” s usen
as the array bound or string size of the member
containing the 2EFER optione.

es PL/P restrictions: only 1 REFER opticen ger (evel-1
structure;s the member ccntaining the REFER must be the
Last member of the structures "reference_Llength" must
be "fixed 5in(i5)",

FORTRAN compatibility

@ An external structure is equivalent to s COMMON block
with the name of the top level structure and with the
structure members having data-type <attributes> as
variables in the blocke.

be A structure whose members K are wunaligned bit strings
allows named access to dindividual bitssy which in
FORTRAN 4s accomplished by means of maskss shiftse anc
truncatese.

Scope rules

l.

20

Blccks are celimited by BEGIN-END an¢ PROC-END pairs (sce
below); these blocks are dndistinguishable dn their
effects on ddentifier scopese.

A internal variable is known to the block 4n which the
varjable 1is declared anc in all contained blocksy unless
the contained block or an intervening parent block has a
declaration of that variablee.

Variables may be referencec only in blocks 1in «hich they
are knowne

The scope of an internal proccedure name is the same as that
of an internal variatle declared in the olock containing
the procecdures

The scope of an ENTRY pname is the same as that of the
procedure immediately containing the EMTRY statement.

(ﬂ&

II1.

Ao

Ce

Paqe 12 PE-T-483

Expressions

Types cf expressions

1.

2e

.

Opcrators--pertorm an operation on argument(s)sy yielaing
the same type with possibly different precision or sizes
prcfix and infix notation.

Builtin functions--Like FORTRAN intrinsicssy except name 1is

not reservecd. Must not be declared in PL/P.

Comparisons=--rcsult in EIT(1)y value depending c¢n whether
the comparison was true or false; may ce used anyplace a
8IT(1) velue is neeged.

Arithmetic expressicns

l.

2.

Se

Operators--standard FORTRAN types: ety MRy Mamy W/n,
"xx® (last 2 not supported by PL/F3 for civisions see
next)

Builtins

ae MOD (numberes modulus) returns (fixed bin?

be DIVIDE (dividends civisors result_precision) returns
(fixed bin)

CO?DBF"SOHS: n:n' nﬂ.—_n’ l|>", n“)u, n):u, LR n"(n' w =

Character expressions

lo

2.

Operators: "}|" (cencatendticn)’
Builtins

ae SEARCH (stringls string2) returns (fixed tin)--result
is character position within strinec 1 c¢f the first
occurrence of any character in string2s or 0 if none
(nonstandardc) .

be SIN (string Cercsult_precisionl) returns (fixea
bin)--result 1s .the numeric value of the string when
interpreted as the character representation of a

decimal 1integer

c. CHAR (integer Co result_size_din_charsd) returns
(char(«})=--result 1is the character representation of
the integer as a decimal number. The size will be no
less than that required to regresent the most negative
value an integer of the precision of the first argument
may takesy including the minus signs but may be
increased by means of the second argument. If not all

Ce

Ko

L.

Me

Page ze PE-T-483

character pcsitions are used 1in reoresenting the
numberes Leading spaces «will be acded to complete the
size; no space will occur between the "-%"4y if present.
anc the first digite. ’

AFTER (strincls string2) returns (char(x))-=-returns the
remainder of stringl which follows the first occurrence
of string2y or ** (the nultl string) if none

EEFCRE (stringls string2) returns (char(*))=-returns
the portion of stringl which precedes the first
occurrence of strinc2y or the entire stringl if string2
is not found

CCPY (strincis count) roturns (chart{*))=-~-result 1is
*count™® concatenated occurrences of stringl (PL/P
restricts “count®" to be a constant)

DATE ¢) returns <char(é)--result 1is current date 1in
format YYMMVCD

INDEX (stringls string2) returns (fixed bin)-=result is
character position of first occurrence of string2 1in
stringly or 0 if none

LENGTH (string) returns (fixed bin)—--result is current
Length of string (a constant for CHAR NCNVARYING)

REVERSE (string) returns (char(*))--value is result of
interchanging first and Ulast characterss second ana
ncxt-to-lasts etce.

SURSTR (stringy start_position Co result_Llengthl)
returns (char(*))~-result 1is substring of *string"
starting at *"start_position"® and running for
*"result_Llength" charactersy if specifiedy or until the
end of "string®" if not

TIHE () returns (char(S))~--result is current time 1in
format HHMMSSMMM .

TRANSLATE (stringlsy output_chars Lo input_charsl)
returns (char(*))--result is computed according to the
following algoritham: '

for each character of stringl:?

posn = index (input_charse strl_char}
if posn = 0
then result_char = strl_char
else result_char = substr (output_charse posns 1)
If "input_chars" 1is omittecs the ASCII collating

segcuence is usede.

Page 21 PE-T-483

Nne VERIFY (stringley string2) returns (fixed bin)--result
is character position of first character of stringl
which is net in strinc2s or 8 $f none

0« TRIM (stringe control_bits [+ trim_charl) returns
(char(*))=-result is what s \left of "string" after
removing leading and/or trailing “trim_char"s frcom it.
“control_bits* 4s a tEitstring of length 2 whose first
bit specifies removal of lLleading characters and whose
second bit implies reroval of trailing characters. If
"trim_char™ is omitteds ASCII "space" is the defaulte.
(nonstandard) '

Cormparisons: same as arithmetics crdinal comgarisons are
based on ASCII <coltetinz sequence with shorter idter
Elank-cadced on the right tc the Lencth of the longere.

Pointer expressions

1.

2.

There are no sointer operatcrse.
Builtins
e Standard

¢ NULLC) returns (ptr)--result 4d9s a pointer which
Wwill generate a fault if usede

i1« ADDR (variable) returns (ptr)--result is a pointer
with the value of the aadress of the variableo

be Nonstandard (cepend on Prime representation of
pointers}

ie SEGMNDO (ptrl) returns (£it(12))--result s seogment
number of given pointer

ii. RINC (otr2) returns (bit(2))--result is ring number
of ¢iven pointer T
iiie FEEL (ptrl) returns (fixed bin(lS)})-~result is worc
offset of given pointer
iVe PTR (segnoy wordno Lo rincnol) returns

(otr)--result 1is pointer whose value is given by
the argumentss secno is bit(l12)e wordnec 1is fixecd
bin(l%)s ana ring is bit(2)?

ve ADODREL (ptrle rel_offset) returns (ptr)--result is
a pointer whose segment number is that of ®"ptrin®
and whose word number. is that of *"ptrin"® plus
"rel_offset"

2.

4.

Page 22 PE-T-483

vie BASCPTR (ptrl) returns (ptr)--result is a pointer
whose secnent nurber 1s that of "ptrl®" and whose
worae number 1is ©
viis BASEREL (otrly worc_offset) returns (ptr)--result
is a pointer wheose segment number is thet of "ptri®
and whose worc numter is given by "worc_offset®

viiis STACKPTR () returns (ptr)--result 1is a pointer
whose value 1is tnhe address of the current stack
frame

ixe STACKBASE () returrs (ptr)=——result 19s @a pointer
whose value is the stack base

xe LINKPTR () returns (ptr)--result is & pointer whosc
value s LDBX+2S6

Comoariéons—-only tests for equality (n=vy wozw) are
allowed

expressions

Operators==*"* (conplement), 8¢ (Logiceal AND) o LR
(Logical CR)e *||* (concatenation; not yet supportea by
PL/P)

Builtins

ac SUESTR--same as for CHARACTER except first ercument is
a bitstring and positions ana lengths refer to bits
instead of characterss PL/P restriction: Llenoth nust
be computable at compile time.

be BIN==same as for CHARACTERs except first aroument is e
bitstring and the result is derived by standard bit to
binary conversion cescribed under FIXED BIN above.,

Ce BIT (integer [result_size_in_bitsl) ° returns
(bit(*#})-=-result d9s cerived by standard binary to bit
conversion cdescribed abovee.

de SOME (bitstring) returns (bit(1))=--result s *1°B if
any bit in “bitstring® is *1*Bs *C*E otherwise.

eo EVERY (bitstring) returns (bit¢l))--result is °*1*'B if
every it in vYpitstring" 9s *1°*8y *0'E otherwise.

Comparisons—-~same as character
Comparisons anc infix operators are defined to work only on

bitstrings of the same Llengths the shorter operand 1is
richt padded with *0*6 to the Llenath of the longere.

-

Pzge 3 PE-T-683

Fe Operating system builtin functions (neoenstancuara)

l.

Se

Ge

7o

CSTCRE~-~-generatecs “STAC™ or “STLC"s depencing on size of
operandse First arg is targety second is clc valucy thira
is new value. Fesult = *1*e if operation failede *C*'E
otherwisee.

REGFILE (offset) returns(fixed bin(3l))--cenerates "LCLR
offset® .

ADCGT (queuey item) returns(bit(l))--adds "item®™ to the top
of "queue" via "ATG"3 result = *1°6 if successfuly °*0°E if
aqueue is full.

ADDGBR~~s3ane 3s ACDOTy with ®a3g"

- REMQ@T (queues item) returns(bit(l))~--remroves top item of

"queuemy-storing it in "item"y via “RTQY¥§F result = *1°*8B {f
successfule *0*6 if queue is emptyes

REMGB--same as REMGT with "rRBG"

TESTG (queue) returns (fixecd bin)--result is the number of
jtems in "queue"™

IVe Statements

‘Ae

proc_name: PROCEDURE [(<oarameter_List>)] CRETURNS

(<arg_cdcsc>?] COPTIONS (Loption_Listd>)]s

1.
2.

de

4o

6o

"proc_neme® is the name usec in CALL statements and ENTRY
declarations. e .

<perameter_Llist> is the comma¥'ed List of varizble names by
which the procecdure will refer to its parameters.

RETURNS must be coded iff the procedure is referenced as &
function; <arg_cesc> hes the same syntax .as the
corresponding item in the ENTRY declaration (see aboved.

Must be the first statement in any compilations a "MAINT
routines in the FORTRAN senseqe does not existe

Each PROC staterment must have a wmatching END statement,
which terminates the procecure.

May be used inside another procedure for internal
subroutiness see "Scope Rules®"™ above for effect on scopes
of identifiers. If normal flow of control reaches an
jnternal PRCC statements the entire internal procedure will
be skippede An dinternal subroutine may not be called under
any circumstances unless the immediately containing block
is actives i.eee hags been invoked and has nct exitede.

De

8.

Page 24 PE-T-482

In PL/Py 2ll procedures are recursiblee.

<ootion_List> is a comma'ed List of options.

ae MNOCOPY--may be specified for external PFOCs to suppress
call-vy-value for constantse.

be GATE--causes ring wecakening to occur for ‘all BASED.
PARAMETERy and EXTERNAL pointer assicnmentse.

€Co SAVE (ref)=--causes an RSAV into "ref"™ before any other
coae in the procedure is executede. .

de SHORTCALL--may Se specified for internal PRGCs to speer
up calling and returning oy usinc JSY instead of PCL.

entry_name: ENTRY [(<parameter_List>)] LRETURNS (<arg_desc>)]
COPTIONS (<option_List>)];

1.

2.

Se

IF

Defines another entry point to the proceaure containing the
ENTRY statement besides the meain one (i.eesy the PROC
statement).

Has no effect on scopes and takes no matching END
statements otherwises function and syntax is exactly the
same as a PROC statemente.

"Invisiole®" to normel flow of control.

Wwhen an ENTRY statement ds calledy execution begins
immediately fcllowing the ENTRY statement insteed of at the
beginning of the cantaining grocedure. ‘

f e oA

{cxpressicn> THEN [<executable_statement> 3} CELSE

[<executable_statement>l;]

1. <expression> must be capable of being converted to BIT; if
any bit in the resutting string is non-zeros: the condition
is truece. . .

2. IF statements mey be nestedy ELSE parts match on a LIFGC
basise

BEGIN;S

1. Takes a matching END staotement; the dintervening statements
arc known as a beain blocke.

2¢ An entire beain block 1s considered as an executabtle

statement for the purposes of THEN and ELSE (see above)s
allowing multiole statements to be controllec by an IF
without use of GOTOso.

Ee

Two

l.

20 -

Se

Pace s PE-T=-4¢&3

For effect on identificr scopess see "Scope Rules®™ aboves

flavors of ©"DO"

2

ALt DOs take a8 matching END statements intervening
statements are known as @ CO 3Iroupe

Any do

group may bpe wusecd Like a tbtegin blecck as an

executable statement after a THEN or ELSE.

Simple DO - "DGi* <~ like EEGIK except without effect on
identiftier scopes and hence cheaper

Coxplex COs

a. ALl complex DOs are iterativey isees they Loop wuntil
some test has been failecds This conaition is testea at

the becinnincg of the Lloops so that if the test is
failed upon entering the groups it will not be executec
at atl.,
be DO WHILE (<expressiond>)};
i. <expression> s evaluatec exactly Like the
<expression> in an IF statement.

i« The statements in the do group are repetitively
executed until thke condition s false at the
becinning of an iteratione.

ce DO index = <spec_Llist>s
3¢ For PL/Ps "™index" 3s restricted to be either e
fixed bin(1S) or ptre.

§is <spec_list> is a comma*ed List of <specd>s;3s 1if more
than one <spec> is supplied. the group is executed
under control of the first <spec> until the test in
that <spec> fails;i the croup 1is then executed
under control of the second <spec> until that test
failsiy etce ‘

ii. <specd> syntax: dnit_value C{(LTCG final_valuel ([BY
increment] | REPEAT Cexpressionl>}] CWHILE
(<expression2>)]

ive "init_value®" is assignec to "incex*" before

executing the Locp the first timee. The T0/BY
option may only be wused if "ingex® dis a fixec
bin(15)3; "increment® may be necativee If this
option is chosen and TC i1s specifiecsy the Loop is
executedsy 1incrementing the value of "index" by
“incremcnt" after each loope until the value of

ENDS

Page 25 PE-T =483

(final_value - incex) * dincrement 1is Lless than 0.
If the TC option is omitted but the BY option s
specifiedy the check at the beginning c¢cf each Lloop
is omitted, but incrementation continues as
descridede. If the ©Y option and "increment™ are
not specifiedy the defzult 9s 1« 1f TO and BY are
toth omittedse the croup is executed at most once,
subject to the WHILE clause (sece below).

vie If the REPEAT option is specifiede at the enc of
each 1loop <Kexpressionl> is evaluated and the value
assigned to "index" for the next dteration. This
is particularly useful for traversing tinked Llists.

viie If *the WHILE option is coceds the Lloczc will ©be
terminatea if <Cexpressiorn2> vyielcs a false value
when the conditions are being evaluatea at the
becinning of each dteration. If coced with the
T0/8Y options the WHILE clause cean only shortens
not extendy the Loop curation. NOTE: the WHILE
opticn uses in this way applies only to the current
{specde.

Ce UNTIL (nonstandard} may bpe usec in place of or din
conjunction with WHILE. The syntax is the sames but
the sense of the test is inverted and is performed at
the enc of the loop instead of the becinninge.

- terminates currcent block/group/procecuree. Must have

exact number to terminate all outstanding
blocks/groups/procedurese

CALL name [<arg_Llist>1}

1.

‘Se

.

<arg_Llist> nust match the parameter List 1in the ENTRY
declaration for ®"name" 1in numbers acata types alignment,
etce (see ENTRY attribute aboveld.

Call by value can bCte selected for any argument(s) by
enclosing the variavle name in parentheses (constants and
cxpressions are automatically done as call by value). In
additions this technique <can be use to suppress compiler
warning messages about argument/parameter mismatche

The following undeclared names (*"builtin subroutines") may
be CALLeds but dinstead of 1dinvoking a procecure they
generate a particular machine dnstructione. tnonstandarc
feature)

3. INHIBIT()-~-generates YINHY

boe ENABLEC()--3enerates “ENRY

I.

Fage c7 PE-T~-483

ce WAIT(semaphored)~--cenerates "WALTY
de NOTIFYE(semadhore)--generates “NFYE"™

ee NCTIFYE(sermaphorel)--generates “"NFYE"

GO TO Lacels

1.

2e

"label" may be either a label constaent or varisble; K if the
Label is not in the current olock (prccecure or begin
block)s an implicit RETURN is done to the invocation of the
block containing the Llatel-~i.eey all intervening steck
frames are popped vy a non-tLocal GGCTO.

May be aboreviastec "GOTO" (nc spacele.

RETURN [(<expression>)];

1.

2e

<expression> must be proviced iff the assocfated PROC or
ENTRY statement was coded with the RETURNS option (see
above)s; this mechanism repltaces the FORTRAN rgpractice of
assigning the return value to the function name.,

The RETURN statement with no exporession 1is optional; it
the flow of controt encounters the ENC statement of a
procedures an implicit return is done.

Assfonment staterent

l.

Syntax: {<variable_reference> | {pseuaovariable>) =
<expression>; '

<variable_reference> may be structure or pointer qualified
or subYscrioted.

A pseudovariapble is like a builtin function except that it
receives a value.

ae SUEBSTR--the portion of the first arcument specified by
the seconc and.optional third argument is replaced by
the expression on the right hand side of the "=,
Valid for B8IT and CHAR. Note~-~- the SUBSTR
pseudovariatle does not change the length cf a CHAR VAR
argumente.

be REGISTERS()Y--no arguments;, causes an YRRST® from the
value of the right hend sicee. (nonstancard)

¢ce REGFILE (offset)--causes "STLR offset® usinc the value
of the right hana sice. (nonstandard}

Any PL/1 data type may be assignede.

Ke

Le

Me

1.

4.

Page 28 PE-T=-4823

ALLCCATE based_name SET (ptr_referencels

Causcs storage to oe allocated from a system-manaced pool
of free storagecy performs value initializatien as required
by INIT anrd FEFER clauses in the declaration of
"based_name"y and sets the value of a pointer to the
address of the peginning of thc storage allocatede.

The amount of storage allocated 1is <calculated. by the
compiler from the declaration of “tased_name” rather than
being specified in the statemente.

“based_name"™ 1is the name of a variable, simple or
agcrecates which was ceclarec with the BASEC attribute anc
is known tc the tlock centaining the ALLOCATE statements
it aust not be pointer-gqualifiede.

"ptr_reference”™ receives the address of the allocatec
storage.

FREE <basec_referenced;

1.

Se

Returns to the system—-manaced pool of free storage a single
generation of storagse which has been explicitly atlocateo
(ieeesy no storage may be freed which has not been the
object of an ALLGCATE statement).

The amount of storage freed is determined oy the compiler
from the cdeclaration of the variable in <based_reference>
rather than being specifieac in the statcmente.

The generation of storage- te*be freed is determined by the
address value of a pointer; therefores <basec_reference>
must be explicitly pointer-qualified. with & pointer.

SELECT [<select_excression>1j

l.

20

A "CASE" statement (not in standard.PL/I); terminated b0y
an END statements may be usecd as the
Cexecutable_statement> of a THEN or ELSE clause.
The cases are specified as

WHEN <expression_Llistd> <exccutable_statement);

where <cexpressicn_Llist> is a comma*ed List o1
<expression>s; tne Last case may one :

OTHERWISE <executable_statementd;
1f <select_cxpression> is specifiedy the

<executable_statement> of the first HEN clauses any o
whose <expressiond>s compares ecual to <select_expression>.

Ne

Oe

Qe

Page 2% PE-T-4R3

is executecd; if <(select_expression> 1is omittedy WHEN
Cexpressiond>s are evaluatecd Like the <expression> in an IF
statementsy anc the <executable_statement> of the first WHEN
clausesy any of wnose concditions is trues 1s executed. 1If
no WHEN clause is selectede the <executable_statementd> of
the OTHERWISE <clausee if anys dis executecs After the

selected <executable_statement>y iJif any. is executed,
control is transferred to the ENE statement associa}ed with
the SELECTS ieeee+ under no circumstances will more than

one case be selected.

4 The <executable_statemcnt>s may be 0O or SELECT groups or
BEGIN blockss as well as simple statementse.

Se FORTRAN comcatibility: the SELECT statcment can be used to
simulate 2 computed~-GOTO anc will generate ecually good
code when used this waye

SINSERT filename--just Like FORTRAN (ncnstandard)
LEAVE Clebells (nonstandara)

1« Causes control to oe transferrcd to the statement following
the END of the selectec¢ CO-group--the innermests if "label®
is omittedy or the one whose “CO0" §s labelled with "label™,
if specifiede.

2. “lLabel” must be a label constants control cznnot L(eave a
REGIN or PROC blocke.

%#MOLISTS and ZLISTS (nonstanaard)
le X%NOLIST turns off lListing generation for subsecuent Llines.

?. ALIST- restores the Listincsy if one is being cencratede. As
many- XLIST stetements must be coded as neeced to match the
unterminated XNGLIST stetements for listing to resume.

%REPLACE %c¢ BY lexeme Ly ¢ BY lexeme [9 oeells {nonstandard)

le Supsequent references to "id" are treatec &as {f "lexeme"
had appeared in the source at that spot insteads

2, "lexeme®" is a single lexical item (e.gey icdentifiers string
constante decimal constants etcede

3. "id" may not be replaced in a subsecuent YREPLACE
statemente.

	Cover Page
	Introduction
	ANSI Features Missing in PL/P
	1
	2
	Implementation-Specific Features
	3
	Non_Standard Extensions in PL/P
	4
	Bibliography
	5
	Appendix A
	6
	PL/P Course Syllabus
	-- I. Overview of Differences between FORTRAN and PL/I
	7
	-- II. Identifiers
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	-- III. Expressions
	19
	20
	21
	22
	-- IV. Statements
	23
	24
	25
	26
	27
	28
	29

