
V.C

DATE: August 25* 1978

TO: P & 0 Personnel

FROM: William M. Miller

SUBJECT: PL/P Specification

PE-T-483

PL/P is a variant of A\SI PL/I-' ,"iltnough a subset in r.ost
respects* it contains several significant extensions to the standard
language. Since this document descrioes only the differences between
PL/P and ANSI PL/I* readers not familiar with the full language should
consult one of the references in the bibliography before proceeding
with this document* (ADpendix A* "PL/P Course Syllabus* 1' 1s also
attached for the readcr»s convenience* although it is intended to oe
•used in connection with a course wherein the teacher would expano upon
its contents with fuller explanations and examples.)

AWSJ[_Features_N2Ssin£_,in_PL/P

The following features of ANSI PL/I are not included in PL/PI

1* All forras of input and output

The CONDITION mechanism • - —-**••

The ALLOCATE and FREE statements

The, STOP statement

The DEFAULT statement

2 .

3.

4.

5.

S.

7.

All attributes exceot INTERNAL* EXTERNAL* STATIC* AUTOMATIC*
BASED* ALIGNED* UNALIGNED* 61T* CHARACTER* VARYIMG*
NONVAPYING* ENTRY, RETURNS* LABEL* POINTER* BINARY* FIXED*
LIKE* INITIAL* CONSTANT* VARIABLE* and OPTIONS and (implicit
only) DIMENSION* MEMBER» PRECISION* PARAMETER* REAL* and
STRUCTURE

All builtin functions ano p seuaova r iab les exjeeot. BINARY*
CHARACTER* MOD* DIVIDE* AFTER* BEFORE* COPY, CATE* INDEX*
LENGTH* REVERSE* SUBSTR* TIME* TRANSLATE* VERIFY* NULL* ano
ADDR

Aggregate expressions and promotion* ex.c.ect. promotion from
scalar to array in simple assignment statements

Page PE-T-483

9. Implicit declaration of user-defined names

10. Implicit conversion* excect of precision or size* between
VARYING and NONVAR YING ""CHARACTER data* and between BIT and
FINARY with precision <= 15

4 1 . Condition prefixes

12. Variable extents except the M* H string size in a CHARACTER
parameter descriotion in the declaration of an external entry

13. Subscripted label constants

14. END statement closure labels

15. Scaled and imaginary arithmetic constants and the
default-suppressing character P

16. The 55INCLUDE statement

17. OPTIONS on the BEGIN statement

Ifl. Unconnected array references

19. Multiple-target assignment statements

20. BY NAME assignment

21. BIT VARYING

22. The REFER option

23. The ** and / operators

In acdition* the following restrictions apply:

1. No reference may contain more than one parenthesized list?
except structure references in which the subscripts are
distributed over the components.

2o DO indices must be either BINARY or POINTER*

3. The INITIAL attribute may only contain string or arithmetic
constants* the builtin function NULL()» or ••*"•

4. Iteration factors in the INITIAL attribute must be integer
constants •

?• Only items of storage class STATIC nay be initialized.

6. The BASED attribute may not contain a pointer reference;
hence* all references to BASED variables must be
pointer-quatifiec.

Pane PE-T-482

7. Eitstrings are alignec so that they will not cross word
boundaries* ana members of bitstring arrays are wcrd-alignedi
regardless of alignment attribute.

8. Builtin functions which do not take arguments must be coded
with an empty argument list.

?• The data type must be given for each parameter in an ENTRY
attribute and for the return value in the RETUffvS option of
the PROCEDURE statement and the RETURNS attribute.

i^S

10. The declaration of the reference in the LIKE attribute must
physically cr?cc-c the LIKE reference in the programi anr.
must not contain a LIKE attricute.

11• The first argument to the BIT builtin function must be either
an integer constant or a BINARY variable of precision <= 15.

12» Scale factors are not allowed in the BINARY attribute.

13. The first argument to the CHARACTER builtin function must be
either an inteoer constant or a BINARY variable*

14. The second argument to the COPY builtin function must be a
constant•

15. The third argument to the DIVIDE builtin function must be
present and be an integer constant ana the fourth argument
must be. omitted.

16. The length of a SUBSTR builtin function or pseudovariable
whose first argument is a'uTtscring must be calculatabLe at
compile time.

17. Character string constants may not contain the newline
character.

18. Unaligned bitstrings may oe passec as arguments -only via
caIl-by-value *

19» For aggregate parameters and arguments* array size and
dimensionality and structure shape are not considered in
argument validation.

2.

3.

il2^iil££Qiaii.on-^p_ec i_iJ.c_Fe.at ure.s.

All procedures are implicitly recursive* except these
procedures coded with the SHORTCALL option.

The maximum sire of character strings is 81S2 characters.

The «naxi.Tum size of bit strings is 16 Dits.

internal

http://i_iJ.c_Fe.at

Page PE-T-48?

4. The UNALIGNED attribute i-nplies character alignment for CHARACTER
NONVARYING data* bit alignment for non-array bitstring datat and
word alignment for all ether cases*

5. The ALIGNED attribute implies word alignment in all cases*

6. Ttie maximum Length of an identifier name is 32 characters*

7. The maximum length of a source line is 256 characters*

8* POINTER variables use two words (32 bits) of memory and hence may
only point to word-aligned data*

9. OPTIONS (GATE) may be specified on the external PROCEDURE statement?
causing ring weaKening to occur for all PARAMETER* EASED? anc
EXTERNAL pointers upon assignment*

10. OPTIONS(SAVE(ref)) may be soecifiea on a PROCEDURE statement to
cause an RSAV into the variable "ref" to be generated before any
other code in the procedure*

11. OPTIONS(SHORTCALL) may be specified on an internal PROCEDURE:
statement to cause it to be accessed by JSY instead of PCL; the
compiler diagnoses incorrect use of this feature*

12. 0PTI0NS(SH0RTCALLC(integer_constant)D) may be specified 1n a
declaration with the ENTRY attribute* specifying that the external
routine is to accessed by JSX3 instead of PCL. See Appendix A for
more details.

13. External references are resolved on the basis of the first eight
characters of the name.

14. POINTER* BINARY* and SIT return values arc passed in the A or L
register in order to conform to the FORTRAN convention.

15* LABEL variables are stored with the first two words (.i.e.* the
pointer to the execution address) interchanged for compatibility
with FORTRAN routines expecting an alternate-return argument.

16. Arguments passed to a CHARACTER (ONONVARYING parameter are
actually passed as two arguments* the first being the string
contents and the second the string length. This conforms with a
popular FORTRAN calling sequence. (No additional information is
passed to a CHARACTER(*)VARYING parameter* since the string is
self-defining with respect to length.)

MW^- Wcn-StSG^£5-£i i£Qs< ions_in>_PL/P

The f o l l o w i n g ex tens ions to ANSI P L / I are a v a i l a b l e i n PL/P (f o r
more i n f o r m a t i o n r e g a r d i n g the f u n c t i o n s of these f e a t u r e s * see
Aopcndi x A) :

Pace PE-T-^83

1 .

2.

5.

6*

7.

8.

9.

10.

11.

Uppercase and lowercase are completely
except within character string constants*

interchangeable»

"SINSERT treenameH» if it begins in column It is not followed
by any other text on the line, an6 the •* I" is capitalizeo
will be locically replaced in the compiler input by the
contents of the file referenced by "treename".

The "$" character is legal in identifiers* except that it cay
not be the first character of the identifier name.

Argument-parameter type and number checking is disabled by
Declaring the entry name with no parameter list-

The SELECT statement

The LEAVE statement

The SNOLIST and XLIST statements

The XREPLACE statement

The UNTIL ootion of the DC statement

The CALL statement has been extended to
following "builtin subroutines": INHIBIT,
NOTIFYB, NOTIFYE.

recognize the
ENABLE, WAIT,

The SEARCH, LINKPTR* STACKPTR, SASEPTR, ADOREL* PTR
(nonstandard definition), REL, RING, SE6N0» BASEREL,
STACK3ASE, CSTORE, REGFILE, ADDGT, ADDGB, REMGT, REMGB,
TESTQ, and TRIP builtin func.tj.fias

12. The REGFILE and REGISTERS pseudovariab les

Bibliography

1. The,.PL/I Programming Language, Paul Abrahams—CGO-3077-151, Courant
Mathematics and Computing Laboratory, New York University, March
1978

2» !lulii£S_PL/J[_Referenc.e_Manua]t-
,-A.M8 3 Rev. 0, Honeywell Information

Systems, June 1976

http://func.tj.fias

a g e PE-T-433

A p p e n d i x A

Page PE-T-483

PL/P Course Syllabus

r^^\

Overview of differences between FORTRAN and PL/I

A* No distinction made between upper and lower case (PL/P only)

B^ Freer line structure

1* No column dependencies

a. Up to 256 columns (PL/P)

b» No continuation column — s t a teir.ent s are completely
line-independent

c# No comment column—all comments begin with "/*" anc
must: end with ••*/•*—may oegin anywhere and run for any
number of lines

d* No label field—labels are identifiers* not numbers?
and may be in any column* followed by ":" to indicate
label

C.

D.

E.

F.

* G.

H.

I.

Semicolon requirec
independence

to ens statements—allows line

3. Soaces are required to separate identifiers (keywords*
variables* labels* etc*) and numbers from themselves and
each other when not separated by other non-alphanumeric
characters; may be usee freely anywhere except within
lexical items*

4. Blank lines allowed

Arbitrary complexity of expressions* even in subscripts

Call by value instead of call by reference for constants and
user-selected variables

Identifier names are more flexible

Block-structured—al lows internal subroutines

Multiple entry points* with same or different calling sequences

Storage classes available on a per-variable basis for things
like -CYN.M* COMMON* and runtime storage management (no parallel
in FORTRAN)

Extended 00-loop functionality

!• Logical conditions as well as iterative counts

Page PE-T-<*83

i j0f\

2. Does no.t execute once unconditionally

3. Able to count backwards

4. Multiple specifications for loops

5» Able to use non-integer data for index

J» IF-THEN-ELSE5 nestable; usable with compound statements

K» Uide range of data types

1. Pore flexible arithmetic types

2. Additional types for bits? fixed- and varying-length
character strinosi pointers? labels* etc*

L» Able to grouD data items logically in storage? even if
different data types

**• Able to count characters in calls for the programmer

N« Able to validate arguments in calls

0* Arrays are stored in row-major order: rightmost subscript
varies most raoidly

P» Keywords are not reserved and may b-e used as identifiers

Q* Dynamic handling of errors and other exceptions (not in PL/P)

fU Flexible I/O (not in PL/P)

II* Identifiers

A« Naming restrictions

1» Must begin with an alphabetic character; may contain
digits* M$"» and "_" ("__» is good for clarity by separating
words in a name)

2. Internal names may be up to 32 characters long* external
names may be UD to 8 characters (PL/P and SEG restrictions)

B« Except for label constants and builtin functions (see below)?
must be exolicitly declareo (PL/P restriction* but good
programming practice)

C. The DECLARE statement

1» Replaces the type statements (REAL* LOGICAL* etc.) of
FORTRAN* the data type of an identifier is given by
keywords following it* rather than by different type

Pace PE-T-483

statements

2. May appear «ny_wherre in the procecure* subject to scope
rules Csee below)

3. Syntax: DCL <var_spec>C» <var_spec>C* •••33*

a* Typical syntax of <var_spec>:
Clcvel3 variable name C(<dimensions>)3 <attributes>

i. "level" is used only to declare structures (see
below)

ii. <cimensions>• if oresenti specifies that
"variable_name" is an array. Syntax:
Clboundi:3 hboundl C, Cloouna2:3 hbcund2 C* ».»33
If "looundn" is omitted* default is 1* ficte that
arrays need not start at index=l. PL/P
restriction: all bounds roust be decimal integer
constants.

iii. <attributes> specify storage class* scope* initial
value* and data type* size* precision* and
alignment (see b e l o w) . If multiple words are used
for <attributes>* order is not important.

b. <var_spec> may be "factorec" by use of parentheses so
that Mlevel"s» <attributes>» and <cimensions> apply to
more then identifier.

D. Attributes

1'. Storage classes .--.«—«•-*.

a. AUTOMATIC

i. Default storage c l a s s — m o s t frequently used

ii. Like -DYNM option in F O R T R A N — s t o r a g e is in stack*
so recursive invocation gives a new "generation" of
storage* leaving values in previous but still
active invocations untouched

iii. Does not necessarily retain value froir one call to
the ne x t

iv. Used for most variables unless there is a reason to
use something else.

b . STATIC

i. Like SAVE in FORTRAN

H * II — "S ~ I -» „ „ „ -1 K . . •- -> ̂ +• - i I - ^ I -. Ctl / 9

Page 10 PE-T-483

ii» All recursive invocations reference the sane
generation of storage

iii. Retains value across invocations

iv. Used for cox.nun i cat ion among recursive invocations
of a routine or for value retention from one call
to the next

v» Storage is in linkage section

c. BASED

i. foo storage allocated for EASED variables at compile
or load tirce; either references storage allocates
for another variable (see ADDR builtin function
below) or storage explicitly allocated by the
program at runtime (see ALLOCATE statement below)

ii» Must be referenced through a pointer (i.e.* "ptr ->
based^variable")

iii. When referencing based storage* the pointer
provides the address* the based variable provides
only the data__type template to be usea in accessing
the storage*

iv. Usea for run-time storage management (see ALLCCATE
and FREE statements below)? for linked lists of
data* for ease of passing structures as arguments
(by passing a pointer to the structure)* and for
accessing the same. _s_tA.rage. as different types of
data (e.g.* treating a word of memory as 2 ASCII
characters but being able to access inaividual bits
also)

d. PARAMETER

i. Applies only to the arguments of the current
procedure

ii» PL/P supports the address type but not the keyword

e» Storage classes are mutually exclusive

2» Scopes

a«. INTERNAL—variable name is known ' onLy to the block
which declares it and any contained blocks (see "Scope
Rules" oetow); this is the default scope for variables

b. EXTERNAL

race 11 PE-T-433

i. The storage associatec with the variable may be
accessed by any other olock which also declares the
variable name as EXT

ii. Corresponds to FORTRAN naneo cenmon

11 i• Implies STATIC? no other storage class may be
qi ven

Data types* sizes? precisions

a* FIXED SIN C(orecision)3

i. Corresponds to FORTRAN INTEGER

ii. 1 < "precision" < 31 (for PL/P)--number of bits
required for the aoso_luJte va lue of the range of
integers the variaole represents—e.g.* FIXED
BINC15) is the same as IfoTEGER*2. Must be a
decimal integer constant

iii. If omitted* default for "precision" is 15--single
word integer

iv. Two associated formats for constants: binary
constants ("CG | 13+B"* where M{|>" indicates
choice of MG" or "1" and "•*•" indicates one or more
instances of the preceding) or decimal integer
constants

v. PL/P allows implicit conversion to and from BIT*'
where the corresponcinc oit pattern is defined as
that of the absolute value of the binary item with
the sign bit truncated? it is then zero-padced or
truncated on the right* as necessary to match
lengths

BIT C(size)3

i. Allows access oy named variable to individual bits
of memory (insteac of shifts* truncates* masks*
etc •>

ii. 1 < "size" < 15 (for PL/P)—number of bits in the
data item (must oe decimal integer constant in
PL/P)

i i i• eiT(l) may be used in the same way as FORTRAN
LOGICAL in IF statements (see below for possible
values—not ".TRUE." and ".FALSE."!)

iv. If omitted* default for "size" is 1

Page 12 PE-T-483

v* Constants are of the format

"C (factor) 3 *char+ *F.L radi x 3M

where:

"factor" is the string replication factor* it
must be a decimal integer constant and
specifies that the bit constant is actually
"factor" concatenated occurrences of the
string given

»+" indicates one or more occurrences of "char"

"radix" is the racix factor* a cecimal integer
constant which is interpreted as the number
of bits represented by each "char" anc
implies which characters are legal in the
string* "Bl" or omitted implies binary
representation; nB2" implies quaternary;
"33" implies octal; anc "6<»" implies hex*

vi* PL/P allows implicit conversion to FIXED BIN (see
FIXED BIN for definition of conversion result)

c. POINTER

i* A pointer contains a memory acdress Ce»g*t the
result of an EAL instruction). All pointers in
PL/P are of the 2-word variety—no bit offsets*

ii* There are no poi-n-i-e-r -constants? values for
pointers are obtained solely through use of builtin
functions (see below)

iii. No conversions of any sort are defined for pointers

d. CHAfc C(si^e)3 CCVARYING | NGNVARYIKG)3

i« Represents a string of ASCII characters

iio "size" (must be a decimal integer constant between
1 and 8192 for PL/P) specifies the number of
characters the variable can contain* "NONVARYING"
implies that character strings assigned to the
variable will be blanV:-padded on the riohtt if
necessary* so that the length will always be
exactly "size"; VARYING implies that this blank
padding will not occur ana that the actual, length*
which may be anything from C to "size"t will be
kept with the variable (actually* in the first word
of storage allocated for it)*

Page 13 PE-T-483

i i i • "size's if cmittec* defaults to l; if neither VAR
nor NONVARYING is specified* the oefault is
NONVARYING.

iv« Character constants are of the form

C (factor)3 *char**

whe re

"factor" is the replication factor (see
description of bitstring constants above)

" *" indicates
"char"

zero or core oc currences

"char" is any valid ASCII character? if a
single quote is to be included it must be
douoled

Character constants must not include <newline> in
PL/P—i.e.t they must not cross line boundaries

Varying ana nonvarying strings may be assigned to
each other? no other implicit conversions are
allowed by PL/F for character aata

e* LABEL

i. Label variables identify not only a particular
executable statement but also a particular
invocation of the containing block

ii» Label constants are cefined by the label name
occurring immediately before the text of the
associated statement and separated from it by a
colon* A single statement may have multiple label
constants

i ii * Label constants or variables may be used to
interface with FORTRAN routines which expect an
alternate-return parameter.

iv« No conversions are defined for labels

f. ENTRY L(C<arg_list>3)3 [RETURNS (<arg_desc>)3
CCCONSTANT | VARIARLE>3 C OPT I C.\'S (SHCRTC ALLC (s i ze) 3) 3

i» Defines the ioentifier to be the name by which a
procedure or entry point is to be referenced* If
the RETURNS attribute is coded* the identifier must
be used only like a FORTRAN function reference
(i»c*« the proceoure name nay be useo in any

Page 14 PE-T-46:

circumstances where a variable of the typ<
described in <arg__desc> could be)» otherwise* th«
identifier name must be used only in CALI
statements. If "CONSTANT" is coded* the identifiei
is the name of an external orocedure or entr;
point. It must not be used of internal procedures:
it may not be a member of a structure»- nor my ii
be given a storage class or dimensions* Ii
"VARIA3LE" is specified* however* the nam.e simpl:
references a variable whose vaJJJe is that of <*
procedure or entry* either internal or external-
and these restrictions do not apply* The entr)
value may be assigned to the entry variable in an:
of the normal ways (the programmer is responslbU
for assuring consistency of parametei
declarations.) If neither "CONSTANT" no*
"VARIABLE" is given, the default is "CONSTANT".

ii. <arg_list> has one <arg_desc> for each argument tc
be passed in the call* separated by commas. Ar
<arg_desc> is identical in format to <var-spec5
(see above)* even if a structure (see below)i
except without the variable name* in addition*
attributes giving storage class* scope* and initial
values must not be specified. Each <arg_desc2
defines the data type expected by the callec
procedure in the corresponding argument position or
returned by the procedure. The supplied arguments
must match the specified descriptors in number anc
in type. An error occurs if the wrong number of
arguments is supplied. If data type* precision*
size, or al igntient JnJ-A.^atch occurs* the argument is
converted to the expected type* etc.* if possible
(an error occurs if not)* the result is placed in a
compiler-generated temporary* and the call is made
using the temporary in place of the supplied
argument (call by value).

iii. If only the parentheses are given with no
<arg_list>» the corresponding function
references/CALL statements must have no arguments.
If the parentheses are also omitted* no checking
will be performed by the compiler on argument
number or type.

iv. P_nl£ in ENTRY <arg_list>s* the "size" of a CHAR
<arc_desc> may be specified as "*". If <arg_desc>
is VARYING* any size varying string or character
constant may be suoplied as an argument without
causing mismatch. If NONVARYING* any size
nonvarying string or character constant may be
supplied without mismatch and* in addition* the
generated code will have 2 arguments in this

Page 15 PE-T-483

position: first* the string* ana second*. the
lenoth of the string in characters. This feature
of CHAR(*) NGNVARYI-NG is useful when interfacing
with many FORTRAN routines which accept
string-length argur.cnt pairs* \'ote that mismatch
between VAR/NONVARYING causes call by value*

v. If coded with "OPTIONS(SHORTCALLC(size)3)"* the
entry will be accessed via JSX5 rather than PCL*
arid arguments* if any* will be passed via the
L-reg: if 1 arc* the L-reg will point to the
argument; if >!• the
address of a list of
arguments* A rainimuH of
by the called routine
(decimal); the size xay

L-reg will contain the
3-word oointers to the

3 worns of space for use
will be left at SES+2Q

be increasec by using the
ODt ions I
constant)•

size" argument (which must be

4 . I n i t i a l va lues

a* Syn tax : INIT (<va l u e _ U s t >)

b. Causes the variable to get the given value(s) at the
time of allocation— AUTO* when the block is entered*
STATIC* at load tire* BASED* on explicit allocation.
Illegal for PARAMETER.

<value
type
restri
is be
the sa
var iaa
severa
rep lac
number
rep tic
must
data t

_list
as

ct ion
ing
me nu
le is
I CO
ed oy

of
a tion
speci
ypes)

> is
the
: va
ini ti
T.ber
seal

nsecu
." (c
valu
fact
fy "(

a co
var i
lues
aliz
of
art
tive
ount
es r
or i
coun

mma *
able
mus

ed •
elei
the

va
) va
ep la
n ca
t) (

ed I
b

t be
<va

ents
list
lues
lue"
cea
se o
fact

i st of
eing
const

lue_li
as'

must
are i

* whe
(note
f bit
or) va

va I
ini

ants
st>
the
have
dent
re
arnbi
or c
l u e "

ues
t i a l
) •
must

a r r
one

i c a l
"cou
g u i t
hare

to

of t
i zed
I f a

have
a y ;
e lem
» the
nt"
y wit
cter
iter a

he same
(PL/P

n array
exactly
if the

ent. If
y may be
is the
h string
values»

te these

d« Must not be specified for structures (see below);
individual variables within a structure may be
initialized. Allowed by FL/P only for STATIC
variables.

5• A Ii gnment

a. Syntax: CtALIGNED | UNALIGNED}]

b. "ALIGNED" ootimizes ease of access;
space used.

"UNAL" ootimizes

Page 1 6 PE>T-*83

c* I f o m i t t e d *
NONVARYING;

"UNAL" is the
"ALIGi\E.D" is

default for BIT
the default for all

and CHAR
else*

d. PL/P restrictions and function

i. No effect for anything other than BIT and CHAR
NONVARYING; everything else is always word-aligned

ii* If unaligned* contiguous bitstrings in a structure
(see below) will have no breakage between them
unless necessary to avoid a bitstring crossing a
word boundary! otherwise* each aligned bitstring
and the following item will begin en a word
boundary* In arrays of Ditstrings* each element
begins en a word boundary regardless cf alignment.

iii. For CHAR data* each character is always
byte-aligned* regardless of alignment© If
unaligned* no breakage will occur between array or
structure elements of type CHAR* otherwise* each
aligned element and the following element will
begin on a woro bounaary*

Structures

1* Used for grouping logically-related
data in storage and for linked lists*

but different-typed

2. Members of a structure are declared just like other
variables* except that "level" is present ana greater thar
1.

3« Structure members may themselves be structures* ... „..,„.
case only alignment <attributes> may be specified and the
"level" of the succeeding variable must oe x~~ *•'—
that of the current member*

in whicr
i

greater thar

4. The top-level variable of a structure must have a "level1

of 1. This variable and only this variable in tht
structure may have scope and storage class specified.

5. If alignment is explicitly specified for a structure* tha
alignment is the default for all members of the structur
unless overriden by a contained structure for its ow
members* otherwise* alignment for members of a structur
is determined as described above*

6* A structure member name must be unique within it
immediately-containing structure* but it need not be uniqu
beyond that.

7* To avoid ambiguity* structure members may be "qualified" b
preceding the memoer name by the name of a containin

Page 17 PE-T-483

structure and separating them oy a "•"• As many containing
structure nair.es as are present irsy be specified using this
syntax•

8'. LIKE

a* Syntax: LIKE strueture_reference

b. "structure_reference" is the name of a structure
declared earlier in the program and known to the block
containing the LIKE declaration (see "Scope Rules"
below)?, it need not be a level-1 structure.

00!S

c. The effect is as if the declarations of all members of
"strueture_reference" had been copied directly
following the variable with the LIKE attribute* except
that level numbers are adjusted upward or oownward as
necessary to be compatible with their position in the
new structure*

d. Restrictions: "structure_reference" must have been
declared before its usage in the LIKE specification
(PL/P only); "structure_reference" must not contain a
LIKE attribute.

9. Any subscripting required in the "chain" of structure
references may be specified as if the member referenced
itself had alt the dimensions required.

10. If a structure is BASED* a reference to a member assumes
the pointer contains the acdress of the base* or top level*
of the structure* and the offset of the member within the
structure is addeo to frTe^^value of the pointer in
evaluating the reference.

11. If a structure is external* only the top level name need
match declarations in other blocks* rember names are not
checked •

* 12 REFER

a. Syntax: <aIlocation_tength> REFER reference_length

b. Allows EASED structures to be self-defining in the
amount of storage occupied by a generation of the
structure; replaces a bound of an array member or the
size of a character string member.

c. <aIlocation_length> is an expression which is evaluated
whenever the structure is allocated (see tha ALLOCATE
statement below)* the value is.used to determine the
amount of storage to allocate for the structure ana
after allocation the value is assigned to

http://nair.es

Fage 18 PE-T-485

"reference_length" in the new generation* If the
structure is simply used to overlay aIready-a llocatec
storaget i*e*» it is never the object of an ALLOCATE
statement* <a I loca t ion__leng t h> is ignored and may even
be the constant "0"*

"reference_length" must be an elementary (i*e*»
non_structure) scalar (including inherited dimensions)
member of the structure* it must precede the member
containing the REFER option which references itt and
its "level" must be less than or equal to that of the
member referencing it* Whenever the structure is
referenced in the program* "reference_length" is used
as the array bound or string size of the member
containing the =*EFER option*

PL/P restrictions: only 1 REFER option per level-1
structure; the member containing the REFER must be the
last member of the structure* "reference—length" must
be "fixed oin(15)"*

13* FORTRAN compatibility

An external structure is equivalent to a COMMON block
with the name of the top level structure and with the
structure members having data-type <attributes> as
variables in the block*

b* A structure whose members, are unaligned bit strings
allows named access to individual bits* which in
FORTRAN is accomplished by means of masks* shifts* anc
truncates*

(>m\
F* Scope rules

1* Blocks are delimited by BEGIN-END and PROC-END pairs (see
below); these blocks are indistinguishable in their
effects on identifier scopes*

A internal variable is .known to the block in which the
variable is declared anc in all contained blocks* unless
the contained block or an intervening parent block has o
declaration of that variable*

Variables may be referenced only in blocks
are known*

in which they

The scope of an internal procedure name is the same as that
of an internal variable declared in the block containing
the procedure*

The scope of an ENTRY name is the same as that of the
procedure immediately containing the ENTRY statement*

Paoe 19 PE-T-483

III* Express ions

A. Types of expressions

1. Operators—perform an operation on argument(s)* yielding
the sane type with possibly different precision or size?
prefix and infix notation.

2* Builtin functions--like FORTRAN intrinsics? except name 1s
not reserved. Must not be declared in PL/P.

3. Comparisons—result in BIT(1)» value depending en whether
the comparison was true or false; may be used anyplace a
3ITC1) value is neeced.

2. Arithmetic expressions

1. Operators — standard FORTRAN types: "•"» n.»f «*•», "/"*
***** (last 2 not supported by PL/P % for civision* see
next >

2. Builtins

a* tfOD (number* modulus) returns (fixed bin)

b. DIVIDE (dividend* civisort result_precision) returns
(fixed bin)

3. Comparisons: " = % *»~ = ", ••>•»* "~>'»* «> = «« "<"* "~<" * »< = "

C. Character expressions

1» Operators: "I I" (ccncatehaTicn) '

2. Builtins

a. SEARCH (stringl* string2) returns (fixed bin)--result
is character position within string l of.the first
occurrence of any character in string2» or 0' if none
(nonstandard)

b. BIN (string C*rcsult_precision3) returns (fixed
bin)—result is .the numeric value of the string when
interpreted as the character representation of a
decimal integer

c. CHAR (integer C * resul t_si ze_i n_ c bars 1) returns
(char(*))--result is the character representation of
the integer as a decimal number. The size will be no
less than that required to represent the most negative
value an integer of the precision of the first argument
may take* including the minus sign* but may be
increased by means of the second argument. If not all

Page 20 PE-T-483

character positions are used in representing the
number* leading spaces will be added to complete the
size? no space will occur between the W- M* if present?
and the first digit*

d* AFTER (strincl* string2) returns (char(*))--returns the
remainder of stringl which follows the first occurrence
of string2* or •• (the null string) if none

e» BEFORE (stringl? string2) returns (char(*>)—returns
the portion of stringl which precedes the first
occurrence of strinc2* or the entire stringl if string2
is not found

f. COPY (stringl* count) returns (chart*))—result is
"count" concatenated occurrences of stringl (PL/P
restricts "count" to be a constant)

J*

DATE () returns c h a r (6) — result is current date in
format YYK'.DD

INDEX (strincl* s£ring2) returns (fixed bin)—result is
character position of first occurrence of string2 in
stringl* or 0 if none

LENGTH (string) returns (fixed bin)—result is current
length of string (a constant for CHAR NO.MVARYING)

REVERSE (string) returns Cchar(*>)—value is result of
interchanging first and last characters* second ano
next-to-last* etc»

SUHSTR (string* start_position C* result_lengthU)
returns (char(*))--result is substring of "string"
starting at "start_position" and running for
"result_length" characters* if specified* or until the
end of "string" if not

TIME () returns (char(9))—result is current time in
format HHMMSSMKtf

TRANSLATE (stringl* output_chars C* input_chars3)
returns (char(*)>--result is computed according to the
following algorithm:

for each character of stringlt
posn = index (input—chars• strl_char)
if posn = 0

then result_char = strl_char
else result^char = substr <output_chars* posn* 1)

If "input__chars" is omitted* the
secuence is used.

ASCII collating

Page 21 PE-T-483

3.

n. VERIFY (stringl* string2) returns (fixed bin)—result
is character position of first character of stringl
which is not. in string2» or 0 if none

o. TRIM istringt control_bits C« trirr._char3) returns
(char(*)>—result is what is left of "•string" after
removing leading and/or trailing "trim_charMs from it.
"control_bitsM is a bitstring of length 2 whose first
bit specifies removal of leading characters and whose
second bit implies rer.oval of trailing characters. If
"trim_char,t is omitted* ASCII "space" is the default©
(nonstandard)

Conparisons: same as arithmetic? ordinal comparisons are
based on ASCII collating sequence with shorter ite^
blank-cadded on the right to the length of the longer.

Pointer expressions

1* There are no pointer operators-

2* BuiItins

a* Standard

i. MJLLO returns (ptr)--result is a pointer which
will generate a fault if used.

ii. ADDR (variable) returns (ptr)—result is a pointer
with the value of the address of the variable.

b. Nonstandard (depend
pointers)

on Prime representation of

i. SEGr»0 (ptrl) returns Cbit(12))—result is segment
number of given pointer

ii. RING (ptr2) returns (bit(2))—result is ring number
of given pointer

iii. P.EL (ptrl) returns (fixed bin(15))—result is wore
offset of given pointer

iv. PTR (segno? wordno C» rincnoD) returns
(otr)--result is pointer whose value 1s given by
the arguments? segno is bit(12)t wordnc is fixed
bin(15)t ana ring is bit(2)

v. AODREL (ptrl» rel_offset) returns (ptr)--result is
a pointer whose segment number is that of wptrl"
and whose Word nu.xber. is that of "ptrl" plus
"reL offset"

Page 22 PE-T-483

vi. BASCPTR (ptrl) returns (ptr)—result is a pointer
whose segment nuirber is that of "ptrl" and whose
wora number is 0

vii. 3ASEREL (otrl» worc_offset) returns (ptr)—result
is a pointer whose segment number is that of "ptrl"
ana whose wora number is given by "worc^offset"

viii. STACKPTR () returns (ptr)—result is a pointer
whose value is the address of the current stack
frame

ix. STACKBASE () returns (ptr)-—result is a pointer
whose value is the stack base

x» LINKPTR () returns (ptr)—result is a pointer whose
value is L&X+256

Comparisons—only tests for equality (" =H» »*» = •») 6 r e

allowed

Bit expressions

I. Operators — •**• (complement)t *S.f (logical AND)* •(•
(logical 0R)» •||• (concatenation; not yet supportea by
PL/P)

2. Builtins

a.

c •

SUBSTR--same as for CHARACTER except first argument is
a bitstring and positions ana lengths refer to bits
instead of characters. PL/P restriction: length must
be computable at compile' time.

BIN—same as for CHARACTER* except first argument is a
bitstring and the result is derived by standard bit to
binary conversion described under FIXED BIN above*

BIT (integer C* result_size_in_bits3)' returns
(bit(*))—result is cerived by standard binary to bit
conversion described above.

* d. SOKE (bitstring) returns (bit(l))— result is fl*B
any bit in "bitstring" is »lfB* *CtE otherwise.

if

* e. EVERY (bitstring) returns (bit(D)—result is »1«B
every bit in "Ditstring" is •1*S» •0*6 otherwise.

if

3. Compariso-ns—same as character

4. Comparisons anc infix operators are defined to work only on
bitstrings of the same length; the shorter operand is
right padded with *0*6 to the length of the longer.

Page 23 PE-T-483

F* Operating system builtin functions (nonstanaara)

1* CSTCRE—generates "STAC" or "STLC"* depending on size of
operands. First arc is tercet* second is clc value* thiro
is new value* Result = •1,B if operation failed? •C,B
otherwi se*

2. REGFILE (offset) returns(fixed bin(31>)—generates "LCLR
offset"

3* AODGT (Queue* item) returns(bit(1))—adds "item" to the top
of "queue" via "ATG"» result = •1,B if successful* •0,E if
queue is full.

A. ADDG5—same as ADDST* with "A3G"

5* REMQT (aueuei item) returns (bi t(1))—removes top item of
"aueue"* storing it in "item"* via "RTG"? result = »1»B if
successful* *0*6 if queue is ercpty*

6* REMQB—same as REMGT with "RBG"

7© TESTQ (queue) returns (fixed bin)—result is the number of
items in "queue"

IV* Statements

A* proc_name: PROCEDURE C(<oarameter_list>)3
(<arg_dcsc>)3 COPTIONS (<option_list>)3»

CRETURNS

1* "proc^name" is the name used in CALL statements and ENTRY
declarations* ---—~*-

2* <perameter__list> is the comma'ed list of variable names by
which the procedure will refer to its parameters*

3. RETURNS must be coded iff the procedure is referenced as a
function; <arg_cesc> has the same syntax .as the
corresponding item in the ENTRY declaration (see above)*

4* Must be the first statement in any compilation;
routine* in the FORTRAN sense* does not exist*

"MAIN"

5* Each PROC statenent must have a snatching END statement*
which terminates the procecure.

6. May be used inside another procedure for internal
subroutines; see "Scope Rules" above for effect on scopes
of identifiers* If normal flow of control reaches an
internal PROC statement* the entire internal procedure will
be skipped* An internal subroutine may not be called under
any circumstances unless the immeciately containing block
is active* i*e** has been invoked and has net exited*

Page 2<t PE-T-^81

7. In PL/P* all procedures are recursible.

8. <ootion_list> is a comma*ed list of options*

a* NOCOPY--may be specifie'd for external PFOCs to suppress
call-by-value for constants.

b* GATE—causes ring weakening to occur for att BASED*
PARAMETER* and EXTERNAL pointer assignments.

c. SAVE (ref)--causes an RSAV into "ref" before any other
coae in the procedure is executed.

d» SHORTCALL--*ay be specified for internat FROCs to spee*-:
up calling and returning oy using JSY instead of PCL.

* 0. entry_name: ENTRY C(<parameter_list>>3 CRETURNS <<arg_desc>>3
C.0PTI0NS (<option_list>)3.

1. Defines another entry point to the procedure containing the
ENTRY statement besides the main one (i.e.* the PBOC
statement)•

2. Has no effect on scopes and takes no matching END
statement; otherwise* function and syntax is exactly the
same as a PROC statement.

3. "Invisiole" to normal flow of control.

4. When an ENTRY statement is called* execution begins
immediately following the ENTRY statement instead of at the
beginning of the containing procedure.

C. IF <cxpression> THEN £<executable._statoment> 3» CELSE
C<executable_state,nent>3; 3

1. <expression> must be capable of being converted to BIT; if
any bit in the resulting string is non-zero* the condition
is true.

2. IF statements may be nested* ELSE parts match on a LIFC
basis.

D. BEGIN;

1. Takes a matching END statement* the intervening statements
are known as a bcojjn bjlocjc..

2. An entire begin block is considered as an executable
statement for the purposes of THEN and ELSE (see above)*
allowing multiple statements to be controllec by an IF
without use of GOTOso

Page t'z PE-T-463

3. For effect on identifier scopes* see "Scope Rules" above*

E. Two flavors of "DO"

1.

2.

3*

All DOs take a matching END statement;
statements are known as a co ^roup..

intervening

Any do group may De usee like a begin blcck as an
executable statement after a THEN or ELSE*

Simple DO - "DC;" - like BEGIN except without effect on
Identifier scopes and hence cheaper

<» • Complex COs

a* All conplex 00s are iterative? i.e.* they loop until
some test has been failed. This conoition is tested at
the -beginning of the loop? so that if the test is
failed upon entering the group* it will not be executed
at all.

b. DO WHILE ((expression));

i. (expression) is evaluatec exactly like the
(expression) in an IF statement.

ii. The statements in the do group are repetitively
executed until the condition is false at the
beginning of an iteration.

c. DO index = <spec_list>;

i. For PL/P« "index" is restricted to be either a
fixed bin(15) or ptr.

ii. <spec_list> is a co«nma*ed list of <spec>s; if more
than one <spec> is supplied* the group is executed
under control of the first <spec> until the test in
that <spec> fails; the croup is then executed
under control of the second <spec> until that test
fai ls» etc.

iii. <spec> syntax: init_value CCCTG final_value3 CBY
increment! | REPEAT <expressionl>>3 CWHILE
(<expression2>)3

iv- "init_value" is assignee to "index" before
executing the locp the first time. The TO/BY
option may only be used if "index" is a fixec
bin(15)» "increment" may be negative. If this
option is chosen and TC is specified- the loop is
executedt incrementing the value of "index" by
"increment" after each loopt until the value of

Paac 26 PE-T-483

(final_value - index) * increment is Less than 0.
If the TO option is omitted but the BY option is
specified* the check at the beginning cf each Loop
is omitted* but incrementation continues as
described. If the BY option and "increment" are
not specified? the default is 1. If TO and SY are

t both omitted* the group is executed at most once*
subject to the WHILE clause (see below).

vi. If the REPEAT option is specified* at the eno of
each loop <expressionl> is evaluated and the value
assigned to "index" for the next iteration. This
is particularly useful for traversing tinked lists.

vii. If the' WHILE option is coded* the loco will be
terminated if <expressior.2> yielcs a false value
when the conditions are being evaluated at the
beginning of each iteration. If coded with the
TO/BY option* the WHILE clause can only shorten*
not extend* the loop duration. IMOTE: the WHILE
option used in this way applies onL.v. to the current
<spec>.

d» UNTIL (nonstandard) may De used in place of or in
conjunction with WHILE. The syntax is the same* but
the sense of the test is inverted and is performed at
the end of the loop instead of the beginning.

F. END? - terminates current block/group/procedure. Must have
exact number to terminate all outstanding
blocks/groups/procedures.

G. CALL name C <arg__li s t> 1»

1. <arg_list> nust match the parameter list in the ENTRY
declaration for "name" in number* data type* alignment*
etc. (see ENTRY attribute above).

2. Call by value can be selected for any argument(s) by
enclosing the variaole name in parentheses (constants and
expressions are automatically done as call by value)* In
addition* this technique can be use to suppress compiler
warning messages about argument/parameter mismatch.

3. The following undeclared names ("builtin subroutines") may
be CALLed* but instead of invoking a procedure they
generate a particular machine instruction. (nonstandarc
feature)

a. INHIBIT()—generates "IWH"

b. ENABLEO—generates "EN(?"

Page 27 PE-T-483

/^^S

c . WAI T (s e i r . a p h o r e) - - g e n e r a t e s " W A I T "

d . N O T I F Y R (s e m a o h o r e) — g e n e r a t e s "NFYJ?"

e . N G T I F Y E (s e m a p h o r e) - - g e n e r « t e s " N F Y E "

H« GO TO label;

1* "label" may be either a label constant or variable;, if the
label is not in the current olock (proceoure or begin
block)* an implicit RETURN is aone to the invocation of the
block containing the label — i.e.? all intervening stack
frames are pooped cy a non-local GOTO*

2. Way be abDre vis ted "GOTO" (no space).

I. RETURN C(<expression>)3;

1* <expression> must oe provided iff the associated PROC or
ENTRY statement was coded with the RETURNS option (see
above); this mechanism replaces the FORTRAN practice of
assigning the return value to the function name.

2. The RETURN statement with no exoression is optional; if
the flow of . control encounters the END statement of a
procedure? an implicit return is done.

J* Assignment statement

1. Syntax: (<variabte_reference>
<expression>;

I <pseuoovariable>3

2. <variable_reference> may be structure or pointer qualified
or subscrioted.

3» A pseudovariaole is like a builtin function except that it
receives a value*

a* SU£STR--the portion of the first argument specified by
the secona and.optional third argument is replaced by
the expression on the right hand side of the "=•••
Valid for 3IT and CHARo N o t e — the SUPSTR
pseudovariable does not change the length of a CHAR VAR
argument*

b. R E G I S T E R S O — n o arguments; causes an "RRST" from the
value of the ricjht hand sice. (nons tanoard)

c. REGFILE (offset)—causes "STLR offset" using the value
of the right nana side. (nonstandard)

4. Any PL/I data type may be assigned.

Page 28 PE-T-^83

* K* ALLOCATE bascd__name SET (ptr_reference>»

1. Causes storage to oc allocated from a systein-managed pool
of free storage* performs value initialization as required
by INTT and FEFER clauses in the declaration of
,,based_name" * and sets the value of a pointer to the
address of the oeginning of the storage allocated*

2* The amount of storage allocated is calculated, by the
compiler from the declaration of **based_nameH rather than
being specified in the statement*

3* "based_name" is the name of a variable* simple or
aggregate* which was declared with the BASED attribute anc

r is known to the block containing the ALLOCATE statement;
it must not. be Dointei—qualified*

4* "ptr_referencen receives the address of the allocatec
storage.

* L* FREE <basec_reference>>

1* Returns to the system-managed pool of free storage a single
generation of storage which has been explicitly allocateo

A <i*e*» no storage may be freed which has not been the
object of an ALLOCATE statement)*

2* The amount of storage freed is determined oy the compiler
from the declaration of the variable in <based-.reference)
rather than being specifiea in the statement*

3* The generation of storage*.t*e-*'be freed is determined by the
address value of a pointer; therefore* <basec_reference)

C ' must be explicitly pointer-qualified* with a pointer*

* H* SELECT C<select_expression>3*

1. A "CASE" statement (not in standare .PL/1)* terminated b>
an END statement* may be used as the
<executable_state3ient> of a THEN or ELSE clause*

2* The cases are specified as

WHEN <expression_list> <executable_statement>»

where <express icn__l i st > is a comma'ed list 01
<expression>s; the last case may oe

-^ OTHERWISE <executable_statement>»

3* If <select_expression> is specified* th<
<executable_statement> of the first WHEN clause* any o*
whose (expression>s compares eoual to <select_expression> •

Page 29 PE-T-<»e3

1s executed; if <select_expression> is omitted* WHEN
<expression>s are evaluated like the <expression> in an IF
statement* and the <executable_statejaent> of the first 'JHEN
clause* any of whose conditions is true* is executed. If
no WHEN clause is selected* the <executab le_state<i!ent> of
the OTHERWISE clause* if any* is executec. After the
selected <executable_stateraent>* if any* is executed*
control is transferred to the END statement associated with
the SELECT; i.e.* under no circumstances will more than
one case be selected.

4. The <executable_statemcnt>s may be DO or SELECT groups or
BEGIN blocks* as well as simple statements.

5. FORTPAM corrcat ibi ti ty: the SELECT statement can be used to
si-T.ulate a computeri-GOTO anc will generate ecually good
code when used this way.

N. SINSERT filename—just like FORTRAN (nonstandard)

0. LEAVE ClabelJ; (nonstandard)

1. Causes control to oe transferred to the statement following
the END. of the selected DO-group—the innermost* if •label"
is omitted* or the one whose "DO" is labelled with "label"?
if specified.

2. "label" must be a label constant; control cannot leave a
BEGIN or PROC block.

P. XNOLIST; and %LIST; (nonstandard)

1. SNOLIST turns off I isti ng *g~enerat ion for subsecuent lines.

2. XLIST- restores the listing* if one is being generated. As
many SLIST statements must be coded as needed to match the
unterminatec XNOLIST statements for listing to resume.

i

Q» ^REPLACE id BY lexeme C* ic BY lexeme C» »..D3; (nonstandard)

1* Suosequent references to "id" ore treated as if "lexeme"
had appeared in the source at that spot instead.

2. "lexeme" is a single lexical item (e.g.* identifier* string
constant* decimal constant* etc.).

3. "1c" may not be replaced in a subsecuent XREPLACE
statement.

	Cover Page
	Introduction
	ANSI Features Missing in PL/P
	1
	2
	Implementation-Specific Features
	3
	Non_Standard Extensions in PL/P
	4
	Bibliography
	5
	Appendix A
	6
	PL/P Course Syllabus
	-- I. Overview of Differences between FORTRAN and PL/I
	7
	-- II. Identifiers
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	-- III. Expressions
	19
	20
	21
	22
	-- IV. Statements
	23
	24
	25
	26
	27
	28
	29

